Enumeration of Minimal Dominating Sets and Variants
نویسندگان
چکیده
In this paper, we are interested in the enumeration of minimal dominating sets in graphs. A polynomial delay algorithm with polynomial space in split graphs is presented. We then introduce a notion of maximal extension (a set of edges added to the graph) that keeps invariant the set of minimal dominating sets, and show that graphs with extensions as split graphs are exactly the ones having chordal graphs as extensions. We finish by relating the enumeration of some variants of dominating sets to the enumeration of minimal transversals in hypergraphs.
منابع مشابه
On the Enumeration of Minimal Dominating Sets and Related Notions
A dominating set D in a graph is a subset of its vertex set such that each vertex is either in D or has a neighbour in D. In this paper, we are interested in an output-sensitive enumeration algorithm of (inclusionwise) minimal dominating sets in graphs, called Dom problem. It was known that this problem can be polynomially reduced to the well known Transversal problem in hypergraphs. We show th...
متن کاملOn the Enumeration and Counting of Minimal Dominating sets in Interval and Permutation Graphs
We reduce (in polynomial time) the enumeration of minimal dominating sets in interval and permutation graphs to the enumeration of paths in DAGs. As a consequence, we can enumerate in linear delay, after a polynomial time pre-processing, minimal dominating sets in interval and permutation graphs. We can also count them in polynomial time. This improves considerably upon previously known results...
متن کاملGenerating All Minimal Edge Dominating Sets with Incremental-Polynomial Delay
For an arbitrary undirected simple graph G with m edges, we give an algorithm with running time O(m|L|) to generate the set L of all minimal edge dominating sets of G. For bipartite graphs we obtain a better result; we show that their minimal edge dominating sets can be enumerated in time O(m|L|). In fact our results are stronger; both algorithms generate the next minimal edge dominating set wi...
متن کاملEnumerating minimal dominating sets in chordal bipartite graphs
We show that all minimal dominating sets of a chordal bipartite graph can be generated in incremental polynomial, hence output polynomial, time. Enumeration of minimal dominating sets in graphs is equivalent to enumeration of minimal transversals in hypergraphs. Whether the minimal transversals of a hypergraph can be enumerated in output polynomial time is a well-studied and challenging questio...
متن کاملOn the Neighbourhood Helly of Some Graph Classes and Applications to the Enumeration of Minimal Dominating Sets
We prove that line graphs and path graphs have bounded neighbourhood Helly. As a consequence, we obtain output-polynomial time algorithms for enumerating the set of minimal dominating sets of line graphs and path graphs. Therefore, there exists an output-polynomial time algorithm that enumerates the set of minimal edge-dominating sets of any graph.
متن کامل